000 01417 am a22002653u 4500
042 _adc
100 1 0 _aYasrab, Robail
_eauthor
_92275
700 1 0 _aFu, Zeyu
_eauthor
_92276
700 1 0 _aDrukker, Lior
_eauthor
700 1 0 _aLee, Lok Hin
_eauthor
700 1 0 _aZhao, He
_eauthor
700 1 0 _aPapageorghiou, Aris T.
_eauthor
700 1 0 _aNoble, Alison J.
_eauthor
245 0 0 _aEnd-to-end First Trimester Fetal Ultrasound Video Automated CRL and NT Segmentation
260 _c2022-04-28.
500 _a/pmc/articles/PMC7614066/
500 _a/pubmed/36643819
520 _aThis study presents a novel approach to automatic detection and segmentation of the Crown Rump Length (CRL) and Nuchal Translucency (NT), two essential measurements in the first trimester US scan. The proposed method automatically localises a standard plane within a video clip as defined by the UK Fetal Abnormality Screening Programme. A Nested Hourglass (NHG) based network performs semantic pixel-wise segmentation to extract NT and CRL structures. Our results show that the NHG network is faster (19.52% < GFlops than FCN32) and offers high pixel agreement (mean-IoU=80.74) with expert manual annotations.
540 _a
546 _aen
690 _aArticle
655 7 _aText
_2local
786 0 _nProc IEEE Int Symp Biomed Imaging
856 4 1 _uhttp://dx.doi.org/10.1109/ISBI52829.2022.9761400
_zConnect to this object online.
999 _c2064
_d2064