JOM KITA KE POLITEKNIK
Image from Google Jackets

Low protein expression enhances phenotypic evolvability by intensifying selection on folding stability

By: Contributor(s): Publication details: 2022-08.Subject(s): Genre/Form: Online resources: Summary: Protein abundance affects the evolution of protein genotypes, but we do not know how it affects the evolution of protein phenotypes. Here we investigate the role of protein abundance on the evolvability of green fluorescent protein (GFP) towards the novel phenotype of cyan fluorescence. We evolve GFP in E.coli through multiple cycles of mutation and selection, and show that low GFP expression facilitates the evolution of cyan fluorescence. A computational model whose predictions we test experimentally helps explain why: Lowly expressed proteins are under stronger selection for proper folding, which facilitates their evolvability on short evolutionary time scales. The reason is that high fluorescence can be achieved by either few proteins that fold well, or by many proteins that fold less well. In other words, we observe a synergy between a protein's scarcity and its stability. Because many proteins meet the essential requirements for this scarcity-stability synergy, it may be a widespread mechanism by which low expression helps proteins evolve new phenotypes and functions.
Item type:
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

/pmc/articles/PMC7613228/

/pubmed/35798838

Protein abundance affects the evolution of protein genotypes, but we do not know how it affects the evolution of protein phenotypes. Here we investigate the role of protein abundance on the evolvability of green fluorescent protein (GFP) towards the novel phenotype of cyan fluorescence. We evolve GFP in E.coli through multiple cycles of mutation and selection, and show that low GFP expression facilitates the evolution of cyan fluorescence. A computational model whose predictions we test experimentally helps explain why: Lowly expressed proteins are under stronger selection for proper folding, which facilitates their evolvability on short evolutionary time scales. The reason is that high fluorescence can be achieved by either few proteins that fold well, or by many proteins that fold less well. In other words, we observe a synergy between a protein's scarcity and its stability. Because many proteins meet the essential requirements for this scarcity-stability synergy, it may be a widespread mechanism by which low expression helps proteins evolve new phenotypes and functions.

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-termsUsers may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: (https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms

en

There are no comments on this title.

to post a comment.